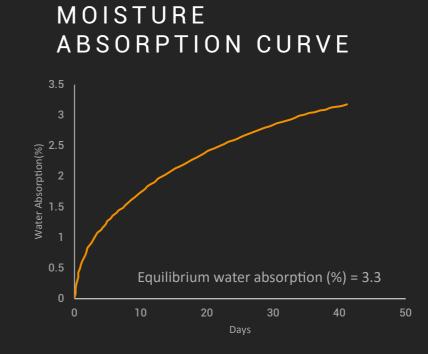
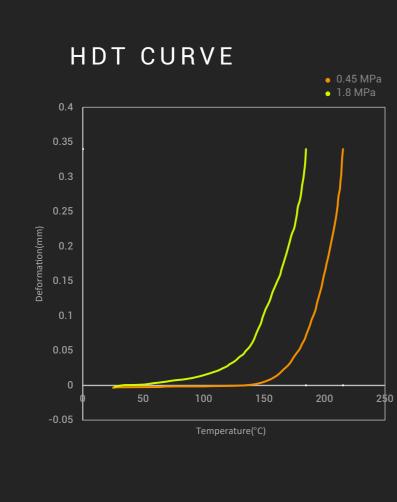
V1.1

FIBERON™ PA6-CF20


Fiberon™ PA6-CF20 is a carbon fiber reinforced PA6 (Nylon 6) filament. The carbon fiber reinforcement provides significantly improved stiffness, strength and heat resistance with outstanding layer adhesion.


WWW.FIBERON3D.COM

THERMAL PROPERTIES

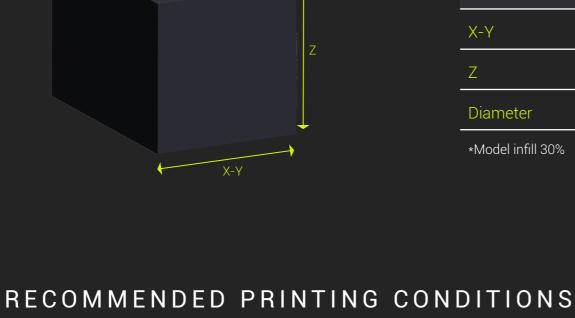
PHYSICAL PROPERTIES

PROPERTY	TESTING METHOD	TYPICAL VALUE
Density	ISO1183, GB/T1033	1.17 g/cm³at 23°C
Melt index	300°C, 2.16 kg	20.5 g/10min
Flame retardancy	UL 94, 1.5mm	НВ
Surface Resistivity (Ω)	ANSI ESD S11.11	OL, >10 ¹² Ω

PROPERTY	TESTING METHOD	TYPICAL VALUE
Glass transition temp.	DSC, 10°C/min	74.2 °C
Melting temperature	DSC, 10°C/min	218.5 °C
Crystallization temp.	DSC, 10°C/min	184.6 °C
Decomposition temp.	TGA, 20°C/min	446.2 °C
Vicat softening temp.	ISO 306, GB/T 1633	219.2 °C
Heat deflection temp.	ISO 75 1.8MPa	173 °C
Heat deflection temp.	ISO 75 0.45MPa	215 °C

PROPERTY	TESTING METHOD	TYPICAL VALUE
Young's modulus (X-Y) Young's modulus (Z)	ISO 527, GB/T 1040	8636.5 ± 211.4 MPa 3759.5 ± 118.5 MPa
Tensile strength (X-Y) Tensile strength (Z)	ISO 527, GB/T 1040	109.3 ± 2.4 MPa 54.0 ± 5.2 MPa
Elongation at break (X-Y) Elongation at break (Z)	ISO 527, GB/T 1040	2.1 ± 0.2% 1.9 ± 0.4 %
Bending modulus (X-Y) Bending modulus (Z)	ISO 178, GB/T 9341	7037.6 ± 205.4 MPa 2975.3 ± 174.3 MPa
Bending strength (X-Y) Bending strength (Z)	ISO 178, GB/T 9341	161.0 ± 3.9 MPa 71.3 ± 17.7 MPa
Charpy impact strength (X-Y) notched Charpy impact strength (X-Y)un-notched Charpy impact strength (Z) un-notched	ISO 179, GB/T 1043	11.0 ± 0.3 kJ/m ² 24.0 ± 1.0 kJ/m ² 7.5 ± 2.7 kJ/m ²
*All specimens were annealed at 100°C for 16h		

MECHANICAL PROPERTIES - WET STATUS


MECHANICAL PROPERTIES - DRY STATUS

PROPERTY	TESTING METHOD	TYPICAL VALUE
Young's modulus (X-Y) Young's modulus (Z)	ISO 527, GB/T 1040	2508.1 ± 82.6 MPa 1056.1 ± 127.9 MPa
Tensile strength (X-Y) Tensile strength (Z)	ISO 527, GB/T 1040	54.7 ± 1.1 MPa 25.5 ± 1.2 MPa
Elongation at break (X-Y) Elongation at break (Z)	ISO 527, GB/T 1040	7.0 ± 0.9% 6.7 ± 1.7%
Bending modulus (X-Y) Bending modulus (Z)	ISO 178, GB/T 9341	2286.2 ± 185.2 MPa 801.1 ± 24.1 MPa
Bending strength (X-Y) Bending strength (Z)	ISO 178, GB/T 9341	64.9 ± 4.9 MPa 29.2 ± 1.0 MPa
Charpy impact strength (X-Y) notched Charpy impact strength (X-Y)un-notched Charpy impact strength (Z) un-notched	ISO 179, GB/T 1043	35.6 ± 1.2 kJ/m ² 73.0 ± 2.0 kJ/m ² 25.2 ± 3.2 kJ/m ²
*All specimens were annealed at 100°C for 16h, and immerged in water at 60°C for 48h prior to testing. The average moisture content of specimens is 5.30%		

SHRINKAGE TESTING

X-Y

Printing speed

Z	40mm	39.90mm	39.86mm	
Diameter	10mm	9.73mm	9.71mm	
*Model infill 30%				

Up to 300mm/s

100 °C/10H

100 °C/16H

AFTER

40.10mm

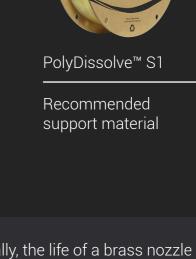
PRINTING

MODEL

SIZE

40mm

Build plate temperature 40-50 °C Drying temp. and time Room Temp. Annealing temp. and time Chamber temperature


recommended to be used with Fiberon™ PA6-CF20.

280-300 °C

<u></u>	<u> </u>		
Cooling fan	OFF		Recomr
			support
NOTE		ens frequently when printing Fiberon™ PA6-CF20. Norma	
	would be approximately 9h. A wear	r-resistance nozzle, such as hardened steel and ruby no:	zzle, is highly

humidity below 20%).

oens frequently when printing F	

AFTER

40.08mm

ANNEALING

Printing temperature

Bed temperature

Nozzle temperature

After the printing process, it is recommended to anneal the model in the oven at 100°C for 16 hours.

100%

2

OFF

If Fiberon™ PA6-CF20 is used as the support material for itself, please remove the support structure before excessive

Fiberon™ PA6-CF20 is sensitive to moisture and should always be stored and used under dry conditions (relative

moisture absorption. Otherwise, the support structure can be permanently bonded to the model.

Infill

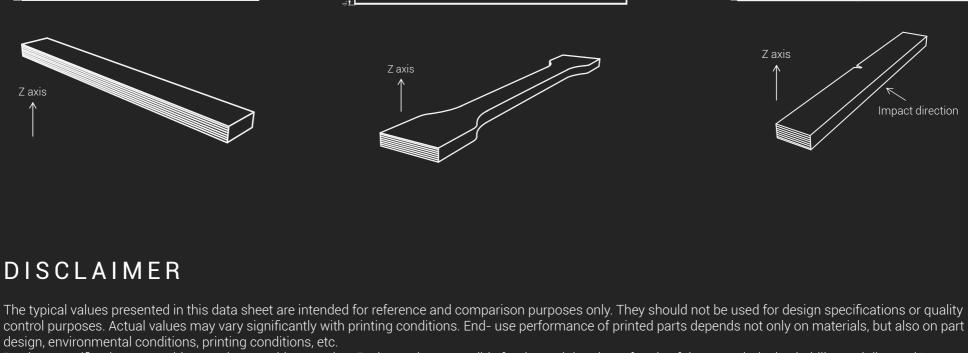
Shell

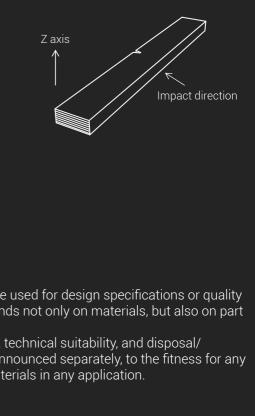
Cooling fan

TENSILE TESTING SPECIMEN

ASTM D638 (ISO 527, GB/T 1040)

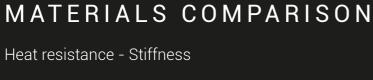
HOW TO MAKE SPECIMENS


Top & bottom layer 3

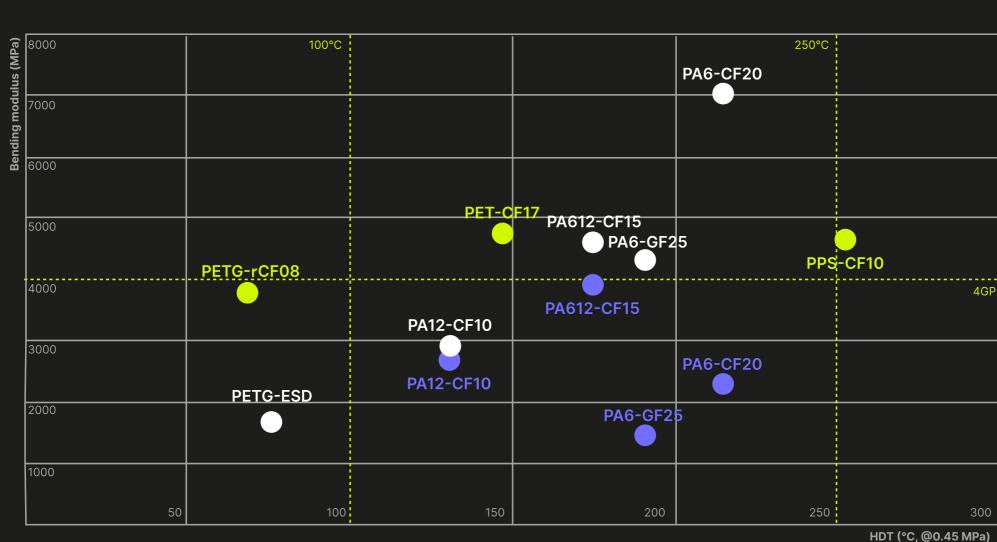

300°C

50 °C

FL	EXURAL TESTING SPECIMEN	
AST	M D638 (ISO 527, GB/T 1040)	
	80.00	
	60.00	
0.00		
<u> </u>		


IMPACT TESTING SPECIMEN

80.00 45.00°


ASTM D638 (ISO 179, GB/T 1043)

DISCLAIMER

design, environmental conditions, printing conditions, etc. Product specifications are subject to change without notice. Each user is responsible for determining the safety, lawfulness, technical suitability, and disposal/ recycling practices of Polymaker materials for the intended application. Polymaker makes no warranty of any kind, unless announced separately, to the fitness for any use or application. Polymaker shall not be made liable for any damage, injury or loss induced from the use of Polymaker materials in any application.

FIBERON

insensitive to moisture

dry statewet state