

Technisches Datenblatt

Ultrafuse® PLA Tough

Datum/Änderung: 20.10.2023 Versionsnr.: 2.1

Allgemeine Informationen

Komponenten

Polymilchsäure-Filament für Schmelzschichtverfahren (FFF, Fused Filament Fabrication).

Produktbeschreibung

Ultrafuse® PLA Tough ist ein äußerst vielseitiges biokompatibles und biobasiertes Material, das speziell für die Bedürfnisse professioneller Anwender entwickelt wurde. Es ermöglicht die Verarbeitung mit hohen Druckgeschwindigkeiten, ohne dass Hardware-Anpassungen erforderlich sind und bietet gleichzeitig eine außergewöhnliche Oberflächengüte und eine beeindruckende Schlagfestigkeit. Darüber hinaus zeichnet es sich durch eine besonders hohe Verarbeitungszuverlässigkeit bei großen Druckaufträgen aus und sorgt so für einen unkomplizierten und kostengünstigen Druckprozess. Ultrafuse® PLA Tough kann eine Alternative zu ABS sein, da es nachhaltiger, stabiler und einfacher zu drucken ist. Da es mit wasserlöslichem BVOH Stützmaterial kompatibel ist, ist es die perfekte Lösung für den Druck komplexer Geometrien für anspruchsvolle Großserienanwendungen. Darüber hinaus können Ultrafuse® PLA Tough-Teile in einem separaten Prozessschritt getempert werden, was die Zähigkeit und Temperaturbeständigkeit deutlich erhöht.

Lieferform und Lagerung

Ultrafuse® PLA Tough-Filamente sollten bei einer Temperatur von 15 - 25 °C in ihrer original verschlossenen Verpackung in einer sauberen und trockenen Umgebung gelagert werden. Bei Einhaltung der empfohlenen Lagerbedingungen beträgt die Mindesthaltbarkeit der Produkte 12 Monate.

Produktsicherheit

Empfohlen: Verarbeiten Sie das Material in einem gut belüfteten Raum oder benutzen Sie eine professionelle Absauganlage. Weitere und detailliertere Informationen finden sich in den entsprechenden Material-Sicherheitsdatenblättern (MSDS).

Haftungsausschluss

Die in dieser Veröffentlichung enthaltenen Daten basierend auf unseren derzeitigen Kenntnissen und Erfahrungen. Sie befreien den Verarbeiter wegen der Fülle möglicher Einflüsse bei Verarbeitung und Anwendung unseres Produkts nicht von eigenen Prüfungen und Versuchen. Eine Garantie bestimmter Eigenschaften oder die Eignung des Produktes für einen konkreten Einsatzzweck kann aus diesen Daten nicht abgeleitet werden. Alle hierin vorliegenden Beschreibungen, Zeichnungen, Fotografien, Daten, Verhältnisse, Gewichte usw. können sich ohne Vorankündigung ändern und stellen nicht die vertraglich vereinbarte Beschaffenheit des Produkts dar. Etwaige Schutzrechte sowie bestehende Gesetze und Bestimmungen gegenüber Dritter sind vom Empfänger unserer Produkte in eigener Verantwortung zu beachten.

Bei den Werten in diesem Dokument handelt es sich um Durchschnittswerte, die gemäß den Anweisungen in den aufgeführten Normen gemessen und berechnet wurden. Die verwendeten Proben wurden mit dem Schmelzschichtverfahren (Fused Filament Fabrication) hergestellt.

Die gemessenen Werte können je nach verwendeter Druckausrichtung und Druckparametern variieren.

Bitte kontaktieren Sie uns für weitere Produktinformationen, wie z.B. REACH, RoHS, FCS.

Filamenteigenschaften			
Filamentdurchmesser	1,75 mm	2,85 mm	
Durchmessertoleranz	±0,050 mm	±0,1 mm	
Rundheit	0 - 0,0	050 mm	
Verfügbare Spulengröße	750 g, 1,0 kg, 2,0 kg, 4,0 kg, 8,0 kg		
Verfügbare Farben	Natur,	schwarz	

Spuleneigenschaften					
Verfügbare Spulengröße	750 g	1,0 kg	2,0 kg	4,0 kg	8,0 kg
Äußerer Durchmesser	200 mm	200 mm	300 mm	350 mm	355 mm
Innerer Durchmesser	50.5 mm	52 mm	51.5 mm	51.7 mm	36 mm
Höhe	55 mm	67 mm	103 mm	103 mm	167 mm

Empfohlene Verarbeitung Druck	Für Prüfkörper verwendet	
Drucker	FFF Drucker	Ultimaker S5
Düsentemperatur	200 – 220 °C / 392 – 428 °F	220 °C / 428 °F
Baukammertemperatur	-	Indirekt beheizt (Abdeckung)
Betttemperatur	50 - 70 °C / 122 - 158 °F	60 °C / 140 °F
Bettmaterial	Glas	Glas
Düsendurchmesser	≥ 0,4 mm	0,4 mm
Druckgeschwindigkeit	40 – 300 mm/s ¹	40 mm/s

Bitte überprüfen Sie die Druckprofilverfügbarkeit für einen schnellen Start unter www.forward-am.com.

¹Hohe Druckgeschwindigkeiten erfordern möglicherweise eine zusätzliche Erhöhung der Düsentemperatur. Die angegebene Druckgeschwindigkeit von 300 mm/s basiert auf aktuellen Validierungen. Da sich Gerätschaften und Technologie ständig weiterentwickeln, ist es möglich, dass in Zukunft sogar noch höhere Druckgeschwindigkeiten erreichbar sind.

Temper-Empfehlungen für eine Verbesserung der Materialeigenschaften			
Gerätschaft	Verwenden Sie einen Ofen, der bis zu ~120 °C aufgeheizt werden kann.		
Bauteil Vorbereitung	Legen Sie die Teile in den Ofen. Fixieren Sie größere Teile, um mögliche Verformungen während des Tempervorgangs zu vermeiden.		
Temperprozess ²	Aufheizen	Von Raumtemperatur auf 120 °C / 248 °F in ca. 15 Minuten (Aufheizzeit).	
	Halten der Temperatur	30 Minuten bei 120 °C / 248 °F (dickere Teile benötigen möglicherweise eine längere Zeit).	
	Abkühlen	Von 120 °C / 248 °F auf Raumtemperatur in ca. 15 Minuten (Abkühlzeit).	

²Durch den Temperprozess kann es zu geringfügigen Abweichungen in der Maßhaltigkeit kommen. Für den Querschnitt von Zugstäben nach DIN EN ISO 527 Typ 1A wurde eine Abweichung von bis zu +2 % in der Dicke (Sollwert 4 mm, ZX-Orientierung) und -1 % in der Breite (Sollwert 10 mm, XY-Orientierung) festgestellt.

Weitere Empfehlungen	
Trocknungsempfehlungen zur Gewährleistung der Druckfähigkeit und der besten mechanischen Werte	Ultrafuse® PLA Tough ist in einem druckfähigen Zustand, eine Trocknung ist nicht erforderlich.
Stützmaterialkompatibilität	Eigenmaterialstütze, Ultrafuse® BVOH.

Allgemeine Eigenschaften	Norm	
Filamentdichte*	1215 kg/m³ / 75,9 lb/ft³	ISO 1183-1
*am Filament gemessen		

Klassifikationen und Zertifizierungen		Norm
Biokompatibilität		
Zytotoxizität XTT neutral rot	Bestanden	ISO 10993-5
Hautirritation	Bestanden	ISO10993-10
Hautsensibilisierung LLNA KretinoSens	Bestanden	ISO10993-10

Thermische Eigenschaften		Norm
HDT A (Wärmeformbeständigkeitstemperatur bei 1,8 MPa)	55 °C / 131 °F	ISO 75-2
HDT A (Wärmeformbeständigkeitstemperatur bei 1,8 MPa) (getempert)	65 °C / 149 °F	ISO 75-2
HDT B (Wärmeformbeständigkeitstemperatur bei 0.45 MPa)	57 °C / 135 °F	ISO 75-2
HDT B (Wärmeformbeständigkeitstemperatur bei 0.45 MPa) (getempert)	94 °C / 201 °F	ISO 75-2
Vicat-Erweichungstemperatur bei 50 N	59 °C / 138 °F	ISO 306
Vicat-Erweichungstemperatur bei 50 N (getempert)	86 °C / 187 °F	ISO 306
Vicat-Erweichungstemperatur bei 10 N	61 °C / 142 °F	ISO 306
Vicat-Erweichungstemperatur bei 10 N (getempert)	157 °C / 315 °F	ISO 306
Glasübergangstemperatur	62 °C / 143,6 °F	ISO 11357-2
Schmelztemperatur	172 °C / 341,6 °F	ISO 11357-3
Schmelze-Volumenfließrate	5,31 cm ³ /10 min / 0,32 in ³ /10 min (210 °C, 2,16 kg)	ISO 1133
Schmelze-Massefließrate	5,68 g/10 min / 0,20 oz/10 min (210 °C, 2,16 kg)	ISO 1133

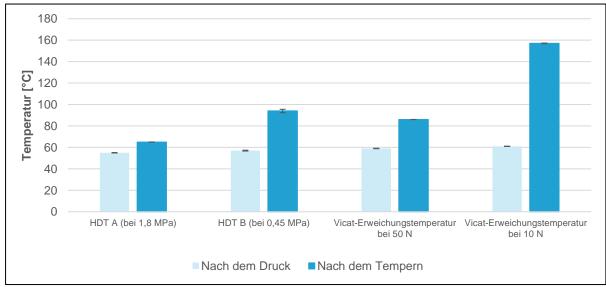
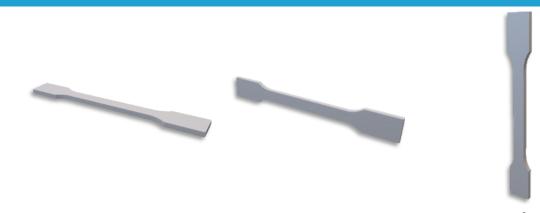



Figure 1: Wärmeformbeständigkeit des Materials nach dem Drucken und Tempern

Mechanische Eigenschaften¹

Druckrichtung	Norm	XY	XZ	ZX ⁵
		Flach	Seitlich (getempert)	Aufrecht
Zugfestigkeit ²	ISO 527	40 MPa / 5.8 ksi	-	28 MPa / 4.1 ksi
Dehnfähigkeit ²	ISO 527	7.4 %	-	2.5 %
Elastizitätsmodul ³	ISO 527	2672 MPa / 387.5 ksi	-	2576 MPa / 373.6 ksi
Biegefestigkeit ⁴	ISO 178	73 MPa / 10.6 ksi	75 MPa / 10.9 ksi	51 MPa / 7.4 ksi
Biegeelastizitätsmodul ⁴	ISO 178	2690 MPa / 390.2 ksi	2410 MPa / 349.5 ksi	2390 MPa / 346.6 ksi
Biegebeanspruchung bei Bruch ⁴	ISO 178	Kein Bruch	Kein Bruch	3.1 %
Schlagzähigkeit nach Charpy (an gekerbtem Prüfkörper)	ISO 179-2	18 kJ/m ²	8.6 kJ/m ² (19.8 kJ/m ²)	2.5 kJ/m ²
Schlagzähigkeit nach Charpy (an nicht gekerbtem Prüfkörper)	ISO 179-2	33 kJ/m²	34 kJ/m² (54.1 kJ/m²)	10 kJ/m²
Schlagzähigkeit nach Izod (an gekerbtem Prüfkörper)	ISO 180	18 kJ/m²	7,1 kJ/m²	2,4 kJ/m²
Schlagzähigkeit nach Izod (an nicht gekerbtem Prüfkörper)	ISO 180	28 kJ/m ²	27 kJ/m²	10 kJ/m²

¹Konditionierung der Prüfkörper: Standard Klima (23°C, 50% rF 72h)

²tPrüfgeschwindigkeit: 5 mm/min ³Prüfgeschwindigkeit: 1 mm/min ⁴Prüfgeschwindigkeit: 2 mm/min ⁵gemessen an gefrästen Prüfkörpern

sales@basf-3dps.com

Mechanische Eigenschaften: Diagramme

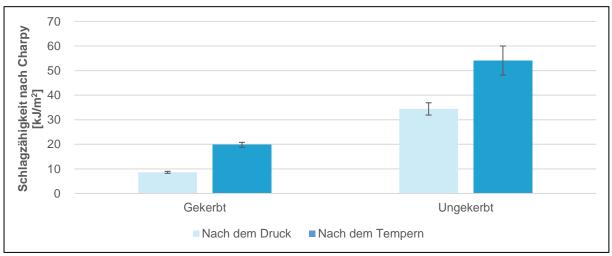


Figure 2: Schlagzähigkeit nach Charpy nach dem Drucken vs. Tempern (gedruckt in XZ-Orientierung)

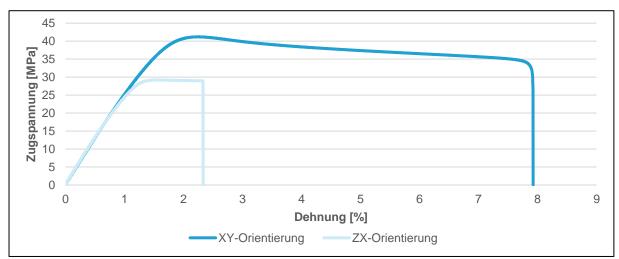


Figure 3: Typische Zug-Spannungs-Dehnungskurven in XY- und ZX-Druckorientierung.

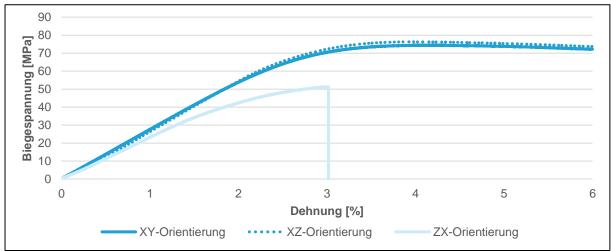


Figure 4: Typische Biege-Spannungs-Dehnungskurven in XY-, XZ- und ZX-Druckorientierung.