Rigid 10K Resin

Rigid 10K Resin für starre, starke Prototypen für Anwendungen in der Industrie

Das neue, mit einem hohen Anteil von Glas verstärkte Kunstharz ist das steifste Material in unserem Portfolio für den Maschinenbau. Wählen Sie Rigid 10K Resin für präzise Teile für industrielle Anwendungen, die erheblichen Belastungen standhalten müssen, ohne sich zu verbiegen. Rigid 10K Resin weist eine glatte, matte Oberflächenbeschaffenheit und eine ausgezeichnete Beständigkeit gegen Hitze und Chemikalien auf.

Spritzguss-Urformen für kleine Serien und Einsätze

Modelle für Aerodynamiktests

Hitzebeständige und Flüssigkeiten ausgesetzte Komponenten, Halterungen und Vorrichtungen

Simuliert die Steifigkeit von Glas- und faserverstärkten Thermoplasten

DATEN ZU DEN MATERIALEIGENSCHAFTEN VON RIGID 10K RESIN

	METRISCH			IMPERIAL			METHODE
Mechanische Eigenschaften	Grün	UV¹	UV+Thermisch ²	Grün	UV ¹	UV+Thermisch ²	Prüfnorm
Maximale Zugfestigkeit	55 MPa	65 MPa	53 MPa	7980 psi	9460 psi	7710 psi	ASTM D638-14
Zugmodul	7,5 GPa	10 GPa	10 GPa	1090 ksi	1480 ksi	1460 ksi	ASTM D638-14
Bruchdehnung	2 %	1%	1 %	2 %	1%	1 %	ASTM D638-14
Biegebruchfestigkeit	84 MPa	126 MPa	103 MPa	12 200 psi	18 200 psi	15 000 psi	ASTM D790-15
Biegemodul	6 GPa	9 GPa	10 GPa	905 ksi	1360 ksi	1500 ksi	ASTM D790-15
Schlagzähigkeit nach IZOD	16 J/m	16 J/m	18 J/m	0,3 lbf/in	0,3 lbf/in	0,3 lbf/in	ASTM D256-10
Schlagzähigkeit nach IZOD (ungekerbte Probe)	41 J/m	41 J/m	41 J/m	0,8 lbf/in	0,9 lbf/in	0,7 lbf/in	ASTM D4812-11
Thermische Eigenschaften							
Wärmeformbeständigkeit- stemperatur bei 0,45 MPa	65 °C	163 °C	218 °C	149 °F	325 °F	424 °F	ASTM D648-16
Wärmeformbeständigkeit- stemperatur bei 1,8 MPa	56 °C	82 °C	110 °C	133 °F	180 °F	230 °F	ASTM D648-16
WAK, 0-150 °C	48 μm/m/°C	47 μm/m/°C	46 μm/m/°C	27 μin/in/°F	26 μin/in/°F	26 μin/in/°F	ASTM E831-13

Alle Prüflinge wurden mit dem Form 3 gedruckt.

Lösungsmittelkompatibilität

Gewichtszunahme in Prozent über einen Zeitraum von 24 Stunden für einen gedruckten und nachgehärteten Würfel von 1 x 1 x 1 cm im jeweiligen Lösungsmittel:

Lösungsmittel	Gewichtszunahme in % über 24 h	Lösungsmittel	Gewichtszunahme in % über 24 h
Essigsäure, 5 %	< 0,1	Isooctan	0
Aceton	< 0,1	Mineralöl (leicht)	0,2
Isopropylalkohol	< 0,1	Mineralöl (schwer)	< 0,1
Bleichmittel ~5 % NaOCI	0,1	Salzlösung (3,5 % NaCl)	0,1
Butylacetat	0,1	Natriumhydroxid (0,025 %, pH = 10)	0,1
Dieselkraftstoff	0,1	Wasser	< 0,1
Diethylenglykolmonomethylether	0,4	Xylol	< 0,1
Hydrauliköl	0,2	Starke Säure (konzentrierte HCI)	0,2
Skydrol 5	0,6	Tripropylenglykolmonomethylether	0,4
Wasserstoffperoxid (3 %)	< 0,1		

 $^{^1}$ Die Daten wurden von Teilen gewonnen, die mit dem Drucker Form 3, 100 $\mu m,$ gedruckt und 60 Minuten lang bei 70 °C mit einem Form Cure nachgehärtet wurden.

² Die Daten wurden von Teilen gewonnen, die mit dem Drucker Form 3, 100 μm, gedruckt, 60 Minuten lang bei 60 °C mit einem Form Cure nachgehärtet und dann zusätzlich 125 Minuten lang bei 90°C thermisch gehärtet wurden.